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Abstract
The necessary conditions for the localization of a quantum particle in a two-
level system subject to periodic oscillations of the height (energy splitting) and
the width (tunnelling matrix) of a potential barrier were found. The former
field is supposed to have a simple cosine form while the latter has the form of
asymmetric pulses or a train of delta-functions.

PACS numbers: 03.65.−w, 05.60.−k

Tunnelling and localization in a two-level system (TLS) have been the subject of much
investigation since such a system serves as a model for many problems in physics, chemistry
and biology. Interest in this problem has quickened after the counter-intuitive discovery by
Grossmann et al [1] of particle localization in TLS under a properly chosen periodic acting
field (coherent destruction of tunnelling; see the recent comprehensive review [2]). The
Hamiltonian of a TLS can be expressed in terms of the Pauli matrices σi (i = x, y, z) as

H = [
 + g(t)] σz + [
0 + f (t)] σx (1)

where 
 is the TLS asymmetry and 
0 is the tunnelling amplitude. The modulation of the
TLS parameters could arise from an (in addition to the dc-field 
0) ac-field f(t) changing
the width of a potential barrier. The time-dependent field g(t) may come from an ac-field
modulation of the energy splitting 
.

The criteria of localization of a particle in a TLS have been obtained for different special
cases of equation (1). When 
0 = g = 0, and f(t) = V0 sin(ωt), the localization occurs
when z ≡ 2V0

ω
are zeros of the Laguerre polynomial Ln(z) which in the semiclassical limit

reduces for high frequencies to the zeroth-order Bessel function J0(z) [2]. When both dc-field

0 and ac-field f(t) = V0 sin(ωt) are present there are two criteria [3], namely 2
0

ω
has to

be an integer, 2
0
ω

= n, and 2V0
ω

have to be zeros of the nth-order Bessel function Jn. The
corresponding criteria have also been obtained for the cases when 
0 = g = 0, and f(t) has
the form of symmetric pulses [4] and a train of delta-functions [5]. The random fields have
been the subject of some recent research [6, 7].

Some additional progress had been achieved recently by Klinger and Gitterman [8]. If
the TLS is subjected to an additional classical field g(t) = W0 cos(�t),with f(t) = 0, the
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equation of motion takes the form of the Mathieu equation. However, as was shown in [8],
using the appropriate unitary transformation of the Hamiltonian (1) one can eliminate the field
g(t) (‘dressing effect’) which results in replacing the bare tunnelling amplitude 
0 with the
renormalized one, 
̃0, namely


0 → 
̃0 = 
0J0

(
W0

��

)
exp (−a) (2)

where a is the overlap integral for thermal-equilibrium photon states with displaced centres.
In that case the Hamiltonian (1) takes the following form:

H = 
σz +
[

̃0 + f(t)

]
σx. (3)

In this note we use a unified way to establish the number and the form of criteria of
localization in the presence of two periodic fields g(t) and f(t) where the latter may have a
form of asymmetric or symmetric pulses, or the train of delta-functions.

We consider the TLS system with an external field f(t) while the second field g(t) is
either absent (the Hamiltonian (1) with g(t) = 0) or has been taken into account by the
renormalization procedure (the Hamiltonian (3)).

We assume that the function f(t) in equation (1) or (3) is a pulse of the form

f(t) =
{
A if 0 � t < T1

−B if T1 � t < T
(4)

and f(t + T ) = f(t).
As the basic wavefunction we use those localized in the ‘right’ and ‘left’ wells, and the

wavefunction �(t) corresponding to the Hamiltonian (1) is described on this basis by the
amplitudes

C(t) ≡
(
cl(t)

cr(t)

)
.

Our aim now is to find the time-propagation 2 × 2 matrix U(t, t0) on a single period of
(4), U(T , 0) ≡ U defined as

C(T ) = UC(0). (5)

Using the commutation relation for the Pauli matrices σ i one can find [4] the following
equation of motion for the amplitude C(t):

dC(t)

dt
=
(−i[
0 + f(t)] −i


−i
 i[
0 + f(t)]

)
C(t). (6)

Two first-order differential equations (6) with constant coefficients can easily be solved,
which define the propagation matrix U1(t) for 0 � t < T1 as

C(t) = U1(t, 0)C(0) =
{

[cos(ω1t)− iα1 sin(ω1t)] −iβ1 sin(ω1t)

−iβ1 sin(ω1t) [cos(ω1t) + iα1 sin(ω1t)]

}
C(0) (7)

where

ω1 =
√

2 + (
0 +A)2 α1 = 
0 + A

ω1
β1 = 


ω1
. (8)

Equations (7) define cl(T1) and cr(T1) which serve as initial conditions for T1 � t < T

in equations which differ from (7) in replacing A by −B, i.e.

C(t) = U2(t, T1)C(T1)

=
{{cos [ω2(t − T1)] − iα2 sin [ω2(t − T1)]} −iβ1 sin [ω2(t − T1)]
−iβ1 sin [ω2(t − T1)] {cos [ω2(t − T1)] + iα2 sin [ω2(t − T1)]}

}
C(T1)

(9)
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with

ω2 =
√

2 + (
0 − B)2 α2 = 
0 − B

ω2
β2 = 


ω2
. (10)

A single-period propagation matrix U is equal to the product of U2(T , T1) and U1(T1, 0),
defined in equations (7) and (9), and turns out to be equal to

U =
{
a − ib c − id

−c − id a + ib

}
(11)

where

a = cos(ω1T1) cos [ω2(T − T1)] − (α1α2 + β1β2) sin(ω1T1) sin [ω2(T − T1)]

b = α2 sin [ω2(T − T1)] cos(ω1T1) + α1 sin(ω1T1) cos [ω2(T − T1)]
(12)

c = (α1β2 − α2β1) sin(ω1T1) sin [ω2(T − T1)]

d = β1 sin(ω1T1) cos [ω2(T − T1)] + β2 sin [ω2(T − T1)] cos (ω1T1) .

If the transition matrix U is equal to the identity matrix I, U = ±I , a particle comes
back to its initial position after a time equal to the period of the external field, i.e. the initially
empty state will remain empty (coherent localization). Note that caution is required in the
interpretation of the results which means, in fact, ‘stroboscopic localization’. Indeed, we have
replaced the continuous time in the Hamiltonian (1) by the discrete times nT, which makes the
interpretation slightly ambiguous since, in addition to localization, when a particle never visits
the second state, a situation may occur where a particle comes back to the initial state after
visiting the second state at half periods nT2 [9]. Which of these two scenarios occurs has to be
checked by numerical analysis of the equation of motion or by the following consideration.
In addition to the necessary condition for localization, U = ±I , the sufficient conditions for
localization mean that the probability of staying in an initially chosen well will remain small
(less than 1

2 ) over one period. To meet the latter requirement, the transition from one well to
another has to be comparatively small, which can be achieved by having small off-diagonal
terms in the matrices entering equations (7) and (9) compared with the diagonal ones, i.e.

β1,2 < α1,2. (13)

As follows from equations (12), the necessary condition for localization, U = ±I, i.e.
a = ±1, b = c = d = 0, will be satisfied if

T1

√

2 + (
0 +A)2 = nπ (T − T1)

√

2 + (
0 − B)2 = mπ (14)

where n and m are integers. Conditions (14) represent the resonance conditions linking the
characteristic times of an external pulse T and T1 and the characteristic rates of the TLS
ω1 and ω2 defined in (8) and (10).

Let us consider the different limiting cases of equation (14).

1. There is no tunnelling amplitude in the absence of an external field (
0 = 0), and the
external pulse (4) is symmetric (A = B, T1 = T

2 ). Then equation (14) reduces to

T = 2πm√

2 +A2

(15)

where m is the integer. Hence, the onset of localization requires quite rigid restriction
(15) on the amplitude A and duration T of an external pulse.

The result (15) can also be applied to the case when the field-free tunnelling amplitude
is non-zero,
0 
= 0, but there is an additional classical periodic field g(t) = W0 cos (�t).
Then, the localization takes place if, in addition to condition (15), the amplitude W0 of
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the field and its frequency � satisfy the condition J0
(
W0
h̄�

) = 0 which, according to (2)
means that 
̃0 = 0. Note that the latter condition on the parameters of a classical field is
independent of condition (15) of an external pulse.

2. Let us replace the pulse (4) by the delta-function potential. This may be achieved by
setting B = 0, A → ∞ and T1 → 0 in such a way that AT1 = const ≡ C. Then, one
gets from (14)

T = πm√

2 +
2

0

and C = nπ (16)

where m and l are integers. The criterion (16) is also applicable in the presence of an
additional periodic field g(t) = V0 cos (�t) with the proviso that, according to (2), 
0

is replaced by 
̃0. Hence, for the onset of localization one gets (even for 
0 = 0)
two restrictions (16), separately for the period T and the strength C of the delta-function
potential, compared with only one restriction (15) for a pulse potential.

Note that we neglect dissipation assuming that the inverse relaxation time is larger than the
characteristic frequencies of our problem. Although dissipation, in general, tends to suppress
coherence [10, 11], it turns out [12] that weak dissipation can stabilize the localized state
while strong dissipation destroys it. Recently [13] the spin-boson Hamiltonian was studied
analytically in connection with the resonance phenomena in the presence of both periodic
force and dissipation. The influence of dissipation on the localization of TLS remains to be
investigated.

In conclusion, we have extended the necessary criteria for the coherent destruction of
tunnelling to TLS with asymmetrically oscillating height and width of the potential barrier.
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